FUSARIC ACID DERIVATIVES: THE EFFECT ON DOPAMINE β -HYDROXYLASE

Sir:

It is known that fusaric acid, 5-n-butylpicolinic acid, inhibits dopamine β -hydroxylase in vitro, and lowers the blood pressure of spontaneously hypertensive rats.¹⁾ But it was reported by N. TAKEMOTO, et al.²⁾ that when fusaric acid was administrated orally to rats, rabbits, dogs, or monkeys, a small amount of the acid was recovered from the urine of the animals, and metabolites oxidized in the butyl group, such as 5-(4'-hydroxybutyl)picolinic acid, 5-(3'-hydroxybutyl)picolinic acid, 5-(3'-carboxypropyl)picolinic acid, and β -[5-(3'-carboxypropyl)pyridyl-2]acrylic acid, were excreted. The enzyme-inhibiting activity of these metabolites was less than one-twentieth that of the original acid. To obtain analogues resistant to metabolism, we synthesized some 5-alkyl homologues of fusaric acid. In the new compounds the terminal methyl group of the side chain is substituted by a halogen atom or phenyl group, or is branched terminal. The synthetic methods will be reported elsewhere.

The spectrophotometric assay using tyramine as the substrate was used to determine the enzyme-inhibiting activity as described in a previous paper¹⁾. The concentrations of these acids giving 50 % inhibition of enzyme are summarized in Table 1. These novel acids inhibit the enzyme markedly except 5-(5'-phenylpentyl)picolinic acid (No. 12). The activity depends on the length of the chain and the halogen atom. Particularly, the ID_{50} of 5-(4'-chlorobutyl)picolinic acid was 4.3×10^{-9} M, while that of fusaric acid was 10⁻⁸ M. These novel acids also showed a marked hypotensive effect in spontaneously hypertensive rats, as will be shown in forthcoming publication.

Table 1.	Concen	trations	of 5-s	ubstituted
alkyl	picolinic :	acids for	50%	inhibition
of dopamine β -hydroxylase				

No.	Alkyl chain	ID_{50} (M)
1	-CH ₂ CH ₂ CH ₂ CH ₃	10-8
2	-CH ₂ CH ₂ CH ₂ CH ₂ CH ₃	6.6 ×10 ⁻⁹
3	-CH ₂ CH ₂ CH ₂ CH ₂ F	2.4 $\times 10^{-8}$
4	-CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ F	1.5×10^{-8}
5	-CH ₂ CH ₂ CH ₂ Cl	4.0×10^{-8}
6	-CH ₂ CH ₂ CH ₂ CH ₂ Cl	4.3×10^{-9}
7	-CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ Cl	4.6 ×10 ⁻⁹
8	-CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ Cl	$1.35 imes 10^{-8}$
9	-CH ₂ CH ₂ CHCH ₃	6.9 ×10 ⁻⁹
	Ċı	
10	-CH ₂ CH ₂ CH ₂ Br	3.1×10^{-8}
11	-CH ₂ CH ₂ CH ₂ CH ₂ Br	5.7 ×10 ⁻⁹
12	-CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ C ₆ H ₅	4.0 $\times 10^{-7}$
13	-CH ₂ CHCH ₃	$1.29 imes 10^{-8}$
	CH ₃	
14	-CH ₂ CH ₂ CHCH ₃	6.1 $\times 10^{-9}$
	ĊH ₃	

HAMAO UMEZAWA TOMIO TAKEUCHI Institute of Microbial Chemistry 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo, Japan

> Коісні Мічано Таісні Кознідое Нігоакі Намано

Nippon Kayaku Co., Ltd. Research Laboratories, Pharmaceutical Division, 3-31-12 Shimo, Kita-ku, Tokyo, Japan

(Received January 12, 1973)

References

- 1) SUDA, H.; T. TAKEUCHI, T. NAGATSU, M. MATSUZAKI, I. MATSUMOTO & H. UMEZAWA: Inhibition of dopamine β -hydroxylase by 5-alkylpicolinic acid and their hypotensive effects. Chem. Pharm. Bull. 17:2377~ 2380, 1969
- UMEZAWA, H. : Enzyme inhibitors of microbial origin. University of Tokyo Press, p. 70, 1972